

Causal Model Extraction from Attack Trees to Attribute Malicious Insider Attacks

Amjad Ibrahim, Simon Rehwald, Antoine Scemama,

Florian Andres, Alexander Pretschner

Technische Universität München

Department of Informatics

Chair of Software & Systems Engineering

The Seventh International Workshop on Graphical Models for Security- **GraMSec 2020**

Introduction

"Hide it or lose it"!

What Tesla's Spygate Teaches Us About Insider Threats

https://www.forbos.com/sites/forbostochcouncil/2018/07/19/what-toslas-spygate-toaches-us-about-insider-threats/#3ccd1c735afe

Facebook fires engineer who allegedly used access to stalk women

60% of companies experienced insider attacks in the last year

https://www.techrepublic.com/article/60-of-companies-experienced-insider-attacks-in-the-last-year/

Introduction

- Mostly non malicious
 - Accountability
 - > Attack attribution a deterrent measure
 - > Assigning blame

- > Accountable system can answer questions regarding the cause of some event
 - System monitoring
 - Model-based causality analysis
- > In this paper, we propose
 - ➤ A methodology to automatically create causal models in the context of insiders from attack trees
 - ➤ An open-source tool (ATCM) that implements the approach
 - An evaluation of the efficiency, the validity of the approach, and the electiveness of the model.

BACKGROUND

A Counterfactual Cause is...

"...Or, in other words, where, if the first object had not been, the second never had existed " (Hume 1748 sec. VII).

David Hume

Lewis's Definition of cause:
"X has caused Y" if "Y would not have occurred if it were not for X"

(Lewis 1986)

Halpern and Pearl definition of Actual Causality

- Causal models [Pearl 1996]
 - Structural equations represent mechanisms of the world
 - Variables represent properties of the world
 - Interventions
- > Causal Model: M=(U, V, R, F) [Halpern and Pearl 2000]
 - **>U**: Set of exogenous variables
 - ➤ V: Set of endogenous variables
 - >R: Associates with each variable a set of possible values
 - **F**: Associates a function F_X with each X ∈ V
 - Visualization via Causal Networks

Example

Context

- S.Get(P)/B.Get(P) = T/T
- S.Get(K)/B.Get(K) = T/T
- S.DK = T AND T = T
- B.DK = T AND T AND F = F
- EK = T OR F = T

S.DK

- S.Get(P)/B.Get(P) = read the passphrase file
- S.Get(K)/B.Get(K) = Suzy/Billy queried the key
- S.DK = S.Get(P) AND S.Get(K) (Suzy decrypts the key)
- B.DK = B.Get(P) AND B.Get(K) AND !S.DK (Billy decrypts)
- EK = S.DK OR B.DK

S.Get(P)

S.Get(K)

Why HP?

- > Preemption
- > Irrelevance
- Conjunction and disjunction of events
- Non-occurrence of events
- "...no right model..." [Halpern 2016]
 - Considerable influence of the model on the result
 - Domain specific

Sources for models: Attack Trees

- Describe potential threats and the steps necessary to successfully perform
 - > Root node contains the ultimate goal of an attack tree
 - Sub-nodes describe activities that are necessary to accomplish the respective parent activity/goal
 - > Formal
 - Graphical

Attack Trees** ≠ Causal Models

**All the attack trees in this presentation are drawn using ADTool

Methodology for Causal Modeling

Suspect Attribution

- Automatically adding instance of roles to a tree
 - Duplicating parts of the tree followed by allotting the new parts to one suspect

Definition 4. A subtree $\mathcal{B} = (\mathcal{N}, \to, n_0, [[n]])$ is attributed with suspects $\{s_1, s_2, \ldots s_l\}$ by: 1) Creating a set (size l) of \mathcal{B} duplicates, denoted $\{\mathcal{B}_1, \mathcal{B}_2 \ldots \mathcal{B}_l\}$. A duplicate \mathcal{B}_i contains the nodes of \mathcal{B} with every node renamed with i suffix.

2) Constructing a new tree $\mathcal{A}\mathcal{B}$ with root n_0 from \mathcal{B} , then adding the disconnected $\{\mathcal{B}_1, \mathcal{B}_2 \ldots \mathcal{B}_l\}$, and connecting their root nodes using an OR function with n_0 .

- Where do we attribute
 - Trees that model different attack vectors

Attribution Level

Adding Roles to Attack trees

- Depends on the structure and the and the semantics of the branch
- Unfolding after the last AND gate allows considering any possibility of colluding attacks, in some cases it may be unnecessary.

Tree Transformation

Definition 6. Attack Tree To Causal Model

 $AT = (\mathcal{N}, \rightarrow, n_0, [[n]])$ is mapped to a $M = (\mathcal{U}, \mathcal{V}, \mathcal{R}, \mathcal{F})$ i.e. $AT \rightarrow M$ as follows

- $-\mathcal{U}=E(AT)$, where E(AT) returns the leaf nodes of a tree AT
- $-\mathcal{V} = \mathcal{N} \setminus E(AT)$, where \ is the difference between two sets.
- $-\mathcal{R} = \{0,1\}.$
- \mathcal{F} associates with each $X \in \mathcal{V}$ a propositional formula $F_X = [[X]]$, which corresponds to the semantical formula from the AT

Adding Preemption Relations

- Preemption relations relate variables about same event for different suspects
 - They represent disparity between suspects
 - Hard to model from different facts
 - Suzy's privileges in a system
 - ➤ Billy's criminal record
- > For automation relate them to metrics of insiders' risk assessment.
 - Suspiciousness metric (SM): aggregates ability to perform an event or willingness attack
 - Calculation is incident-specific: it can be a simple reflection of privileges in the system; it can be a sum of weighted factors
- Location : among attribution variables one level after the attribution level
 - > two variables with an edge from the the more suspicious suspect (higher SM) to the less suspicious suspect (in case of equal values the edge is not added).
- Semantically, the preemption relation is represented by a not clause (!X) added to the less suspicious (i.e. smaller value) suspect about the higher suspicious suspect

Tool Support

Evaluation

Class	Use Case	Nodes	# Potential Attackers
HP	HP_1	3	2
111	HP_2	2	2
Insider (Industry)	Steal Master Key	12	{2,8}
Insider (Literature)	${\bf BecomeRootUser_1}$	8	{2,8}
msider (Literature)	$BecomeRootUser_2$	11	{2,8}
	$Artificial_1$	255	$\{2, 8\}$
Artificially Generated	Artificial ₂	1017	{2,8}
	Artificial ₃	3057	$\{2,8\}$

- Efficiency of the process: model expansion and automation
- Validity of the model
- Effectiveness of the model:
 - ➤ Threat analysis → Attack Trees → Implement the attacks → Check the logs
 - > Formulated queries

Conclusions

- Problem: insider threat and preventive measures
- Solution: accountability through supporting causal reasoning
 - > A methodology that automatically constructs HP causal models form attack trees
 - Suspect attribution while allowing colluding.
 - Preemption relations.
 - Efficiency of the process, validity and effectiveness of the model
- > Future Work
 - Consider more elements of threat models
 - > Examples: notions of attack-defense trees, SAND attack trees

Thanks For Your Attention!

HP Definition (Informal)

A set of events $\vec{X} = \vec{x}$ is an actual cause of φ given a model if the following three conditions hold [Halpern 2015]:

AC1. both the cause and the effect actually happened

AC2. Changing the original values of \vec{X} to a different setting $\vec{x'}$ while keeping a possibly empty set (\vec{W}) of the remaining variables at their original value, φ does not occur anymore.

AC3. \vec{X} is minimal; no subset of \vec{X} satisfies conditions AC1 and AC2.

Example

Context

- S.Get(P)/B.Get(P) = T/T
- S.Get(K)/B.Get(K) = T/T
- S.DK = T AND T = T
- B.DK = T AND T AND F = F
- EK = T OR F = T

Is S.Get(K) a cause?

Set S.Get(K) = F and
$$\vec{W} = \emptyset$$

- S.Get(P)/B.Get(P) = T/T
- S.Get(K)/B.Get(K) = F /T
- S.DK = TAND F = F
- B.DK = TAND TAND T = T
- EK = F OR T = T
- φ still occurs \rightarrow AC2

Set S.Get(K) = \mathbf{F} and and $\mathbf{W} = \{B.DK\}$

- S.Get(P)/B.Get(P) = T
- S.Get(K)/B.Get(K) = F/T
- S.DK = TAND F = F
- B.DK = TAND TAND T = F
- EK = F OR F = F
- φ does not occur anymore \rightarrow AC2

Evaluation: Efficiency of the extraction

					2 Suspects						8 Suspects					
				ŗ	Тор	Middle		Leafs		Top		Middle		Leafs		
	\mathbf{AT}	n	1	b	n	exec(s)	n	exec(s)	n	exec(s)	n	exec(s)	n	exec(s)	n	exec(s)
П	$_{ m SMK}$	12	5	2	37	0.0002	36	0.0002	36	0.0003	139	0.0004	126	0.0004	108	0.0004
	Be.Root1	8	4	1	24	0.0002	25	0.0002	23	0.0002	90	0.0004	91	0.0004	71	0.0004
	Be.Root2	11	4	1	32	0.0002	35	0.0002	32	0.0003	122	0.0006	125	0.0006	98	0.0006
	\mathbf{T}_1	255	8	2	767	0.0069	767	0.0117	767	0.0512	3059	0.0283	2879	0.0460	2303	0.1925
	T_2	1017	8	8	3065	0.0354	3065	0.1133	3065	0.7473	12233	0.1380	11513	0.4610	9209	2.99
	T_3	3057	8	16	6129	0.0939	6129	0.4084	6129	2.94	24465	0.3700	23025	1.65	18417	11.97

Validity of the Models

